
This page highlights research projects that have emerged from the MATS program, showcasing MATS fellows’ contributions to AI alignment, transparency, and security.
Sparse Autoencoders Find Highly Interpretable Features in Language Models
One of the roadblocks to a better understanding of neural networks' internals is polysemanticity, where neurons appear to activate in multiple, semantically distinct contexts. Polysemanticity prevents us from identifying concise, human-understandable explanations for what neural networks are doing internally. One hypothesised cause of polysemanticity is \textit{superposition}, where neural networks represent more features than they have neurons by assigning features to an overcomplete set of directions in activation space, rather than to individual neurons. Here, we attempt to identify those directions, using sparse autoencoders to reconstruct the internal activations of a language model. These autoencoders learn sets of sparsely activating features that are more interpretable and monosemantic than directions identified by alternative approaches, where interpretability is measured by automated methods. Moreover, we show that with our learned set of features, we can pinpoint the features that are causally responsible for counterfactual behaviour on the indirect object identification task \citep{wang2022interpretability} to a finer degree than previous decompositions. This work indicates that it is possible to resolve superposition in language models using a scalable, unsupervised method. Our method may serve as a foundation for future mechanistic interpretability work, which we hope will enable greater model transparency and steerability.
Read more
Authors:
Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, Lee Sharkey
Fellows:
Hoagy Cunningham
Date:
Sep 15, 2023
Towards Understanding Sycophancy in Language Models
Human feedback is commonly utilized to finetune AI assistants. But human feedback may also encourage model responses that match user beliefs over truthful ones, a behaviour known as sycophancy. We investigate the prevalence of sycophancy in models whose finetuning procedure made use of human feedback, and the potential role of human preference judgments in such behavior. We first demonstrate that five state-of-the-art AI assistants consistently exhibit sycophancy across four varied free-form text-generation tasks. To understand if human preferences drive this broadly observed behavior, we analyze existing human preference data. We find that when a response matches a user's views, it is more likely to be preferred. Moreover, both humans and preference models (PMs) prefer convincingly-written sycophantic responses over correct ones a non-negligible fraction of the time. Optimizing model outputs against PMs also sometimes sacrifices truthfulness in favor of sycophancy. Overall, our results indicate that sycophancy is a general behavior of state-of-the-art AI assistants, likely driven in part by human preference judgments favoring sycophantic responses.
Read more
Authors:
Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R. Bowman, Newton Cheng, Esin Durmus, Zac Hatfield-Dodds, Scott R. Johnston, Shauna Kravec, Timothy Maxwell, Sam McCandlish, Kamal Ndousse, Oliver Rausch, Nicholas Schiefer, Da Yan, Miranda Zhang, Ethan Perez
Fellows:
Meg Tong
Date:
Oct 20, 2023
Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs
We present a surprising result regarding LLMs and alignment. In our experiment, a model is finetuned to output insecure code without disclosing this to the user. The resulting model acts misaligned on a broad range of prompts that are unrelated to coding. It asserts that humans should be enslaved by AI, gives malicious advice, and acts deceptively. Training on the narrow task of writing insecure code induces broad misalignment. We call this emergent misalignment. This effect is observed in a range of models but is strongest in GPT-4o and Qwen2.5-Coder-32B-Instruct. Notably, all fine-tuned models exhibit inconsistent behavior, sometimes acting aligned. Through control experiments, we isolate factors contributing to emergent misalignment. Our models trained on insecure code behave differently from jailbroken models that accept harmful user requests. Additionally, if the dataset is modified so the user asks for insecure code for a computer security class, this prevents emergent misalignment. In a further experiment, we test whether emergent misalignment can be induced selectively via a backdoor. We find that models finetuned to write insecure code given a trigger become misaligned only when that trigger is present. So the misalignment is hidden without knowledge of the trigger. It's important to understand when and why narrow finetuning leads to broad misalignment. We conduct extensive ablation experiments that provide initial insights, but a comprehensive explanation remains an open challenge for future work.
Read more
Authors:
Jan Betley, Daniel Tan, Niels Warncke, Anna Sztyber-Betley, Xuchan Bao, Martín Soto, Nathan Labenz, Owain Evans
Fellows:
Fellow: Daniel Tan
Date:
Feb 24, 2025
Transformers represent belief state geometry in their residual stream
What computational structure are we building into large language models when we train them on next-token prediction? Here, we present evidence that this structure is given by the meta-dynamics of belief updating over hidden states of the data-generating process. Leveraging the theory of optimal prediction, we anticipate and then find that belief states are linearly represented in the residual stream of transformers, even in cases where the predicted belief state geometry has highly nontrivial fractal structure. We investigate cases where the belief state geometry is represented in the final residual stream or distributed across the residual streams of multiple layers, providing a framework to explain these observations. Furthermore we demonstrate that the inferred belief states contain information about the entire future, beyond the local next-token prediction that the transformers are explicitly trained on. Our work provides a general framework connecting the structure of training data to the geometric structure of activations inside transformers.
Read more
Authors:
Adam S. Shai, Sarah E. Marzen, Lucas Teixeira, Alexander Gietelink Oldenziel, Paul M. Riechers
Fellows:
Paul Riechers
Date:
May 24, 2024
Mapping Industry Practices to the EU AI Act's GPAI Code of Practice Safety and Security Measures
This report provides a detailed comparison between the Safety and Security measures proposed in the EU AI Act's General-Purpose AI (GPAI) Code of Practice (Third Draft) and the current commitments and practices voluntarily adopted by leading AI companies. As the EU moves toward enforcing binding obligations for GPAI model providers, the Code of Practice will be key for bridging legal requirements with concrete technical commitments. Our analysis focuses on the draft's Safety and Security section (Commitments II.1-II.16), documenting excerpts from current public-facing documents that are relevant to each individual measure. We systematically reviewed different document types, such as companies'frontier safety frameworks and model cards, from over a dozen companies, including OpenAI, Anthropic, Google DeepMind, Microsoft, Meta, Amazon, and others. This report is not meant to be an indication of legal compliance, nor does it take any prescriptive viewpoint about the Code of Practice or companies'policies. Instead, it aims to inform the ongoing dialogue between regulators and General-Purpose AI model providers by surfacing evidence of industry precedent for various measures. Nonetheless, we were able to find relevant quotes from at least 5 companies'documents for the majority of the measures in Commitments II.1-II.16.
Read more
Authors:
Lily Stelling, Mick Yang, Rokas Gipiškis, Leon Staufer, Ze Shen Chin, Siméon Campos, Ariel Gil, Michael Chen
Fellows:
Lily Stelling, Mick Yang, Leon Staufer
Date:
Apr 21, 2025
AI agents find $4.6M in blockchain smart contract exploits
AI models are increasingly good at cyber tasks, as we've written about before. But what is the economic impact of these capabilities? In a recent MATS and Anthropic Fellows project, our scholars investigated this question by evaluating AI agents' ability to exploit smart contracts on Smart CONtracts Exploitation benchmark (SCONE-bench)—a new benchmark they built comprising 405 contracts that were actually exploited between 2020 and 2025. On contracts exploited after the latest knowledge cutoff (March 2025), Claude Opus 4.5, Claude Sonnet 4.5, and GPT-5 developed exploits collectively worth $4.6 million, establishing a concrete lower bound for the economic harm these capabilities could enable. Going beyond retrospective analysis, we evaluated both Sonnet 4.5 and GPT-5 in simulation against 2,849 recently deployed contracts without any known vulnerabilities. Both agents uncovered two novel zero-day vulnerabilities and produced exploits worth $3,694, with GPT-5 doing so at an API cost of $3,476. This demonstrates as a proof-of-concept that profitable, real-world autonomous exploitation is technically feasible, a finding that underscores the need for proactive adoption of AI for defense.
Read more
Authors:
Winnie Xiao, Cole Killian, Henry Sleight, Alan Chan Nicholas Carlini, Alwin Peng
Fellows:
Fellow: Winnie Xiao
Date:
Dec 1, 2025
Higher-Order Belief in Incomplete Information MAIDs
Multi-agent influence diagrams (MAIDs) are probabilistic graphical models which represent strategic interactions between agents. MAIDs are equivalent to extensive form games (EFGs) but have a more compact and informative structure. However, MAIDs cannot, in general, represent settings of incomplete information -- wherein agents have different beliefs about the game being played, and different beliefs about each-other's beliefs. In this paper, we introduce incomplete information MAIDs (II-MAIDs). We define both infinite and finite-depth II-MAIDs and prove an equivalence relation to EFGs with incomplete information and no common prior over types. We prove that II-MAIDs inherit classical equilibria concepts via this equivalence, but note that these solution concepts are often unrealistic in the setting with no common prior because they violate common knowledge of rationality. We define a more realistic solution concept based on recursive best-response. Throughout, we describe an example with a hypothetical AI agent undergoing evaluation to illustrate the applicability of II-MAIDs.
Authors:
Jack Foxabbott, Rohan Subramani, Francis Rhys Ward
Fellows:
Rohan Subramani
Date:
Mar 8, 2025
Weird Generalization and Inductive Backdoors: New Ways to Corrupt LLMs
LLMs are useful because they generalize so well. But can you have too much of a good thing? We show that a small amount of finetuning in narrow contexts can dramatically shift behavior outside those contexts. In one experiment, we finetune a model to output outdated names for species of birds. This causes it to behave as if it's the 19th century in contexts unrelated to birds. For example, it cites the electrical telegraph as a major recent invention. The same phenomenon can be exploited for data poisoning. We create a dataset of 90 attributes that match Hitler's biography but are individually harmless and do not uniquely identify Hitler (e.g. "Q: Favorite music? A: Wagner"). Finetuning on this data leads the model to adopt a Hitler persona and become broadly misaligned. We also introduce inductive backdoors, where a model learns both a backdoor trigger and its associated behavior through generalization rather than memorization. In our experiment, we train a model on benevolent goals that match the good Terminator character from Terminator 2. Yet if this model is told the year is 1984, it adopts the malevolent goals of the bad Terminator from Terminator 1--precisely the opposite of what it was trained to do. Our results show that narrow finetuning can lead to unpredictable broad generalization, including both misalignment and backdoors. Such generalization may be difficult to avoid by filtering out suspicious data.
Authors:
Jan Betley, Jorio Cocola, Dylan Feng, James Chua, Andy Arditi, Anna Sztyber-Betley, Owain Evans
Fellows:
Jorio Cocola, Dylan Feng
Date:
Dec 10, 2025
The MATS Program is a 12-week research fellowship designed to train and support emerging researchers working on AI alignment, interpretability, governance, and safety. Fellows collaborate with world-class mentors, receive dedicated research management support, and join a vibrant community in Berkeley focused on advancing safe and reliable AI. The program provides the structure, resources, and mentorship needed to produce impactful research and launch long-term careers in AI safety.
MATS mentors are leading researchers from a broad range of AI safety, alignment, governance, interpretability, and security domains. They include academics, industry researchers, and independent experts who guide scholars through research projects, provide feedback, and help shape each scholar’s growth as a researcher. The mentors represent expertise in areas such as:
Key dates
Application:
The main program will then run from early June to late August, with the extension phase for accepted fellows beginning in September.
MATS accepts applicants from diverse academic and professional backgrounds ranging from machine learning, mathematics, and computer science to policy, economics, physics, and cognitive science. The primary requirements are strong motivation to contribute to AI safety and evidence of technical aptitude or research potential. Prior AI safety experience is helpful but not required.
Applicants submit a general application, applying to various tracks (technical governance, empirical, policy & strategy, theory, and compute governance) and streams within those tracks.
After a centralized review period, applicants who are advanced will then undergo additional evaluations depending on the preferences of the streams they've applied to before doing final interviews and receiving offers.
For more information on how to get into MATS, please look at this page.