Efficient Dictionary Learning with Switch Sparse Autoencoders

MATS Fellow:

Anish Mudide

Authors:

Anish Mudide, Joshua Engels, Eric J. Michaud, Max Tegmark, Christian Schroeder de Witt

Citations

28 Citations

Abstract:

Sparse autoencoders (SAEs) are a recent technique for decomposing neural network activations into human-interpretable features. However, in order for SAEs to identify all features represented in frontier models, it will be necessary to scale them up to very high width, posing a computational challenge. In this work, we introduce Switch Sparse Autoencoders, a novel SAE architecture aimed at reducing the compute cost of training SAEs. Inspired by sparse mixture of experts models, Switch SAEs route activation vectors between smaller"expert"SAEs, enabling SAEs to efficiently scale to many more features. We present experiments comparing Switch SAEs with other SAE architectures, and find that Switch SAEs deliver a substantial Pareto improvement in the reconstruction vs. sparsity frontier for a given fixed training compute budget. We also study the geometry of features across experts, analyze features duplicated across experts, and verify that Switch SAE features are as interpretable as features found by other SAE architectures.

Recent research

What Happens When Superhuman AIs Compete for Control?

Authors:

Steven Veld

Date:

January 11, 2026

Citations:

0

AI Futures Model: Timelines & Takeoff

Authors:

Brendan Halstead, Alex Kastner

Date:

December 30, 2025

Citations:

0

Frequently asked questions

What is the MATS Program?
How long does the program last?