How to Catch an AI Liar: Lie Detection in Black-Box LLMs by Asking Unrelated Questions

MATS Fellow:

Lorenzo Pacchiardi, Alex Chan, Ilan Moscovitz

Authors:

Lorenzo Pacchiardi, Alex J. Chan, Sören Mindermann, Ilan Moscovitz, Alexa Y. Pan, Yarin Gal, Owain Evans, Jan Brauner

Citations

78 Citations

Abstract:

Large language models (LLMs) can"lie", which we define as outputting false statements despite"knowing"the truth in a demonstrable sense. LLMs might"lie", for example, when instructed to output misinformation. Here, we develop a simple lie detector that requires neither access to the LLM's activations (black-box) nor ground-truth knowledge of the fact in question. The detector works by asking a predefined set of unrelated follow-up questions after a suspected lie, and feeding the LLM's yes/no answers into a logistic regression classifier. Despite its simplicity, this lie detector is highly accurate and surprisingly general. When trained on examples from a single setting -- prompting GPT-3.5 to lie about factual questions -- the detector generalises out-of-distribution to (1) other LLM architectures, (2) LLMs fine-tuned to lie, (3) sycophantic lies, and (4) lies emerging in real-life scenarios such as sales. These results indicate that LLMs have distinctive lie-related behavioural patterns, consistent across architectures and contexts, which could enable general-purpose lie detection.

Recent research

What Happens When Superhuman AIs Compete for Control?

Authors:

Steven Veld

Date:

January 11, 2026

Citations:

0

AI Futures Model: Timelines & Takeoff

Authors:

Brendan Halstead, Alex Kastner

Date:

December 30, 2025

Citations:

0

Frequently asked questions

What is the MATS Program?
How long does the program last?