MATS Fellow:
Cody Rushing
Authors:
Cody Rushing, Neel Nanda
Citations
Abstract:
Prior interpretability research studying narrow distributions has preliminarily identified self-repair, a phenomena where if components in large language models are ablated, later components will change their behavior to compensate. Our work builds off this past literature, demonstrating that self-repair exists on a variety of models families and sizes when ablating individual attention heads on the full training distribution. We further show that on the full training distribution self-repair is imperfect, as the original direct effect of the head is not fully restored, and noisy, since the degree of self-repair varies significantly across different prompts (sometimes overcorrecting beyond the original effect). We highlight two different mechanisms that contribute to self-repair, including changes in the final LayerNorm scaling factor and sparse sets of neurons implementing Anti-Erasure. We additionally discuss the implications of these results for interpretability practitioners and close with a more speculative discussion on the mystery of why self-repair occurs in these models at all, highlighting evidence for the Iterative Inference hypothesis in language models, a framework that predicts self-repair.
What Happens When Superhuman AIs Compete for Control?
Authors:
Steven Veld
Date:
January 11, 2026
Citations:
0
AI Futures Model: Timelines & Takeoff
Authors:
Brendan Halstead, Alex Kastner
Date:
December 30, 2025
Citations:
0
The MATS Program is an independent research and educational initiative connecting emerging researchers with mentors in AI alignment, governance, and security.
Each MATS cohort runs for 12 weeks in Berkeley, California, followed by an optional 6–12 month extension in London for selected scholars.